Ambulatory estimation of foot placement during walking using inertial sensors.
نویسندگان
چکیده
This study proposes a method to assess foot placement during walking using an ambulatory measurement system consisting of orthopaedic sandals equipped with force/moment sensors and inertial sensors (accelerometers and gyroscopes). Two parameters, lateral foot placement (LFP) and stride length (SL), were estimated for each foot separately during walking with eyes open (EO), and with eyes closed (EC) to analyze if the ambulatory system was able to discriminate between different walking conditions. For validation, the ambulatory measurement system was compared to a reference optical position measurement system (Optotrak). LFP and SL were obtained by integration of inertial sensor signals. To reduce the drift caused by integration, LFP and SL were defined with respect to an average walking path using a predefined number of strides. By varying this number of strides, it was shown that LFP and SL could be best estimated using three consecutive strides. LFP and SL estimated from the instrumented shoe signals and with the reference system showed good correspondence as indicated by the RMS difference between both measurement systems being 6.5 ± 1.0 mm (mean ± standard deviation) for LFP, and 34.1 ± 2.7 mm for SL. Additionally, a statistical analysis revealed that the ambulatory system was able to discriminate between the EO and EC condition, like the reference system. It is concluded that the ambulatory measurement system was able to reliably estimate foot placement during walking.
منابع مشابه
Long-term Measurement of Foot Placement and Its Variability during Walking
Foot placement and its variability can serve as indicators of mobility and walking ability as a function of age, injury, and disease. Inertial measurement units (IMU) can potentially quantify these parameters without need for laboratory-based motion capture equipment, and for relatively long bouts of walking or during daily living. One limitation is that integration of data from inertial sensor...
متن کاملWalking speed estimation using a shank-mounted inertial measurement unit.
We studied the feasibility of estimating walking speed using a shank-mounted inertial measurement unit. Our approach took advantage of the inverted pendulum-like behavior of the stance leg during walking to identify a new method for dividing up walking into individual stride cycles and estimating the initial conditions for the direct integration of the accelerometer and gyroscope signals. To te...
متن کاملRobust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data
This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject's foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration...
متن کاملFoot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors
There are many inertial sensor-based foot pose estimation algorithms. In this paper, we present a methodology to improve the accuracy of foot pose estimation using two low-cost distance sensors (VL6180) in addition to an inertial sensor unit. The distance sensor is a time-of-flight range finder and can measure distance up to 20 cm. A Kalman filter with 21 states is proposed to estimate both the...
متن کاملRegression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor
Walking speed is widely used to study human health status. Wearable inertial measurement units (IMU) are promising tools for the ambulatory measurement of walking speed. Among wearable inertial sensors, the ones worn on the wrist, such as a watch or band, have relatively higher potential to be easily incorporated into daily lifestyle. Using the arm swing motion in walking, this paper proposes a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 43 16 شماره
صفحات -
تاریخ انتشار 2010